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When the Navier-Stokes equations formulated in terms of stream function Y and vorticity 
i are numerically solved, we encounter the problem of determining the value of Y on a body 
in an external flow. Although this problem is especially important in cases with a shear flow, 
an unsteady flow, or a flow around a rotating circular cylinder, there are no efficient methods 
available which do not use empirical factors. The authors propose here a method of automati- 
cally determining the value of Y on a body with an arbitrary profile without using any empiri- 
cal factors (named the SPB method) and apply rhis method to the case of a rotating circular 
cylinder in a uniform shear flow. A comparison of the results by the SPB method with those 
by the method of fixing the value of Y on a body and by the conventional empirical method 
showed that the SPB method is very efficient and is applicable to both steady and unsteady 
flows. Of course, the method always satisfies the condition of single valuedness of the pressure 
terms of the equation of motion. Through applying the SPB method to the case of a rotating 
circular cylinder in a uniform shear flow, the aerodynamic forces acting on the cylinder were 
obtained and the lift force was found to decrease as the velocity gradient of the shear flow 
increases when the rotational speed of the cylinder was kept constant. le, 1991 Academic Press, Inc. 

1. INTRODUCTION 

When the Navier-Stokes equations formulated in terms of stream function Y and 
vorticity [ are numerically solved, there are many factors to encounter such as 
choice of numerical schemes pertinent to the flow of interest, decision of the dis- 
tance to the outer boundary, treatment of the boundary conditions on the surface 
of a body and the outer boundary, and so on. One important factor is the deter- 
mination of the level of Y on the other boundary when either of the !P’s on the 
surface of a body or the outer boundary is given fixed to a certain value. 

Surprisingly, few studies on how to treat the boundary value of !P on the surface 
of a body have been made among these factors. Okajima er al. [1] numerically 
obtained the aerodynamic force acting on circular and elliptic cylinders in a 
uniform flow by using a fixed value of !P on the surfaces of the bodies and Imai’s 
asymptotic solution [Z] on the outer boundary. In their paper, they assert that the 
pressure difference ACJ = CJ27r) - C,(O)); i.e., the line integral of pressure along a 
closed curve around and on a body is not equal to zero when the time and spatial 
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step sizes are not adequate. This pressure difference dCp ought to be zero? since 
pressure is single-valued. Taking advantage of this property of AC,, Matida rr ~0. 
[3] proposed an iteration method of determining the value of ‘Y on the surface of 
a square cylinder immersed in the Poiseuille flow in a channei. Daiguji [4] showed 
the necessary condition for a flow field to be allowable physically. This condition 
is that a line integral of the pressure term of the equation of motion along a closed 
curve around a body should be zero. After these studies, however, there has not 
been much progress made on the study of the treatment of the boundary vabe of 
Y on the surface of a body. 

Many investigations [S-IO], on the other hand. have been carried out on tn.e 
aerodynamic force acting on a rotating circular cylinder in a Fox. Not only the iif: 
force due to the Magnus effect but also the induced drag force due to the vortL%l; 

> shed into the wake have been generated ES. 61 on the rotatmg cncuiar cyunder 
even in purely two-dimensional flow. This induced drag cannot be separated from 
the so-called induced drag of a finite wing in actual experimental studies. In such 
a case, a numerical method is a powerful means as it is ossible to realize a pa:reti;~ 
two-dimensiona! flow, but this also introduces the problem of wzatment c! the 
boundary value of y/ on the surface of the cylinder. Facing up to this problem, 
Engham [ ll] imposed the condition that the position on the outer boundary of the 
stream line lying on the rotating circular cylinder should be a function of the !ift on 
the cyiinder. His method, however, requires the known value of the lift which is tc 
be computed and is hence an iteration method. The problem becomes h-:her com- 
plicated when a rotating circular cylinder is immersed in a shear Bow. If the -:aix 
of Y on both the surface of the cylinder and the outer boundary are given fixed. 
the absolute value of the pressure difference ~LIC’, 1 is rightfully larger, based on the 
authors’ experience. when the speed of rotation of the cylinder is faster and when 
the velocity gradient of the shear flow is larger. After many trials. the authors found 
a method of determining automatically the value of IV on the surface of the cylinder 
so that AC, is always zero. Therefore. this paper is primarily concerned with the 
characteristics of the results produced by this method, though the computed iifi and 
drag are also presented. 

First, the method developed here is described for a body of an arbitrary p:on&e 
as well as a circular cylinder with the orthogonal curvilinear coordinates. Second, 
the characteristics revealed from the results computed by applying the method ho 
the case of a rotating circular cylinder in a uniform shear flow with relatively lo;: 
Reynolds number are described, and finally the compted aerodynamic forces xe 
presented. 

? METHOD OF DETERMINATION GF iiy m A BoDI~ I .  

2.1. The Case qf a Body icith an A&rraty Prqfiie 

The flow is assumed to be two-dimensional and incompressib!e. Figure E shows 
the coordinate system around a body with an arbitrary profile. Here, (s, n) repre- 
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FIG. 1. Orthogonal curvilinear system and velocity components. 

sent the orthogonal curvilinear coordinates, and n = constant for the closed curve 
C. When V(L’,, u,) and j are the velocity and vorticity vectors, respectively, the 
equation of motion is expressed as 

av FT+v ; -v 
( > 

VP x 5 = - 7 - vv x (, (1) 

where p is fluid density, v kinematic viscosity, T time, p pressure, and r’= IV/. 
Line integration of Eq. (1) along the closed curve Co which is the C attached to 

the surface of the body (IZ = 0) yields the following equation: 

Equation (2) with the left-hand side equal to zero is equivalent to the condition 
given by Daiguji [S]. The velocity component u, is equal to zero on the surface of 
the body. Although dv,/dT is equal to zero by the no-slip condition when the sur- 
face of the body is in steady motion parallel to the surface itself, that value is not 
equal to zero when the surface is in unsteady motion. 

Approximation of dtl,/8T by a forward difference gives 

atl,- 
dT --~{(‘yl-Yo)~+~‘-(Yi-Y~~‘}+o(AT,A~~), (3) 

where Y$ and Y: are the values of Y on the surface of the body and at one spatial 
step dn from the surface in the n direction at time T, respectively. AT is a time step. 
This approximation is accurate to the first order with respect to AT and dn as 
shown in Eq. (3). The line integration, on the other hand, along the closed curve 
Co is approximated by the relation 

J A ds + c Aj Asi, 
cll i=l 

where A is a differentiable function and Co is divided into N spatial steps. This 
approximation has equal accuracy to the trapezoidal rule, i.e., is accurate to the 
second order with respect to As when Co is a closed curve. Introducing Eq. (3) into 
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(2) and approximating the line integral by the above relation yield the following 
relation to determine ul, on the surface of the body after rearrangement 

since the left-hand side of Eq. (2) is equal to zero. As and A?; in the above relations 
are spatial step sizes in the s and IZ directions, respectively. The reason why the 
viscous term in Eq. (2) is left in Eq. (4) as it is is because LQe’n may be represented 
m either way by < or by Y. If all the values are known at time T, the entire right- 
hand side is known except Y~~:Ar~ Therefore, the value of !P on the surface of the 
body at time T+ AT; i.e., YttdT can be determined without any trial determina- 
tion of empirical factors if Yyft” is approximated by the known values at 
T< T+ AT. The accuracy of determining YJltdr by Eq. (4) is the second order, 
i.e., O(AT’, ATAH, ATAs2) as shown in Eq. (4). In addition to this, the order of 
magnitude of the correction term of !Pl (the second term of the right-hand side of 
Eq. (4)) is OfAT). 

2.2. The Case of a Rotating Circular Cylind~ 

The method described in the preceding subsection will be apphed to the case of 
a rotating circular cylinder in this subsection. Figure 2 shows t e coordinate system 
used. The relations of the coordinates (<, q) with exponential scaling in the radial 
direction to the cylindrical coordinates (Y, 6) and the Cartesran ones (.Y, 2.1 are 

5 = log,(r/a) 
‘/ = 6; 

FiG. 2. Coordinates about the circular cylinder and boundary cocdition at faar fieid 
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where a is the radius of the circular cylinder. Equation (4) with the coordinates 
system of Fig. 1 is converted to the equivalent equation with the coordinates system 
of Fig. 2 by the coordinate transformation. Letting the spatial step size in the g 
direction of Fig. 2 be Ad and also taking the same step size in the 5 direction as in 
the ff direction, Asi and An, in Eq. (4) are then represented as 

Asi = a Ad, An; = a(@ - 1). (6) 

Substituting Eqs. (6) for Asi and An, in Eq. (4) yields 

yr+dT= ygT+ ,;+A,- pf- 
0 

?$!!(j”~$d,l)T 

1 N 
(7) 

Since the order of magnitude of the correction term of Yl is O(AT), the unknown, 
Y -T’“’ is extrapolated by using the values of Y, at time T and before, with the 
accuracy of the second order O(AT’). The term at/at is approximated by using the 
same form as that used in the relation (see Eq. (14)) to obtain surface pressure, in 
the case of which the accuracy is @Ad’). Thus Yf’“’ and a[/:/ag are approximated 
as 

Y -T+AT+2~;-2~;-‘AT+ ,:-,A. 

(8) 

Equation (7) is then reduced to 

where Re( =2aU,/v) is the Reynolds number, and Yk and ik are Y and [ at the dis- 
tance k Ad (k=O, 1, 2) from the surface of the cylinder, respectively. Equation (9) 
for the case of a circular cylinder is equivalent to Eq. (4) for the case of an arbitrary 
profile. 

To derive Eq. (9), the second and fourth terms of Eq. (7) were approximated by 
Eqs. (8). However, the terms (Yf’“‘- Yf) in Eq. (7) may be approximated by 
the terms (Yf- YF-“‘) if AT is sufficiently small in comparison with the period 
of the temporal fluctuation of Yr. Also,d[/dS in Eq. (7) may be approximated by 
the terms of Y instead of the form of the second relation of Eqs. (8). In this method 
of approximation, however, Y’s at more points farther away from the cylinder are 
required, which results in a larger pressure difference AC,, since the flow velocity 
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near the surface of the cylinder rapidly changes and since the pressure of the sur:ice 
of the cylinder is computed by using the same form as Eqs. (8 ), as will be descrlbecl 
later. These aspects mentioned above were confirmed by the authors through trial 
computations using both of these approximations instead of Eqs. (8). The method 
of treatment of Y0 on the cylinder described here is termed the ‘-method of seTf- 
pursued boundary value” and will be abbreviated to the “SW3 method” hereafter. 

3. METHOD OF SOLUTION 

3.1. Goveming Equatiotzs, Boundmy, Cotzditlom, 
and Methods of Solution 

The vorticity transport equations and the vorticity equation take the forms in the 
coordinates (4, q), 

where all length, stream function, and vorticity have been non-dimensionalized width 
respect to the radius a and the velocity U, far upstream on the .Y axis; 
h( =h, = h, = e’) is a scale factor, T is time, and Re is the Reynolds number 
( = 2aU,iv). 

The time derivative of Eqs. ( 10) was discretized with a forward difference scheme. 
The spatial derivatives of Eqs. (10) were discretized with the arithmetic mean [ iZ] 
of a central difference scheme at each of time T and T + LaT in the same way as 
Bkajima et ni. [I] have shown in their report. 

As regards the boundary conditions, a no-slip condition was applied to the 
velocity on the surface of the cylinder and the boundary condition supplied as the 
outer boundary is that of the velocity distribution of the uniform shear flow. These 
are formulated in (5, 4) coordinates as 

r=a:Vi=E=O, V,,= -g= V. 
hdq 

where F, is the rotating speed ratio, i.e., the ratio of the circumferential speed of 
the surface of the cylinder to the velocity U,, and E is non-dimensional vorticity 
expressing the velocity gradient at the far field. Since Eqs. (IO) are of an eliiptic 
nature, one condition for each of the variables F’ and < was supplied here along 
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each edge. On the surface of the cylinder, Y0 was supplied by Eq. (9) and co there 
was approximated by the relation, 

(12) 

where 11, is the scale factor at the distance k Ad (k = 0, 1) from the surface of the 
cylinder. Y and [ on the outer boundary take the forms, 

yl,,j=ee’;c Sinrl,+~e2’“(l-COS2f~j) 

Y 
Scc.j= p-S. 

(13) 

The 11 direction (subscript j) was divided into N equal intervals starting from the 
trailing edge of the cylinder (II= 0) so that Ad= 2n/N. The t direction (subscript i) 
was also divided with equal step size Ad. 

Thus, all of the difference equations of Eq. (IO), the boudary values of !Po 
(Eq. (9)), and [o,i (Eq. (12)) are accurate to the second order with respect to AT 
and Ad. 

Distance I’, to the outer boundary must be extremely large to obtain an accurate 
solution for the kind of outer boundary conditions given above as reported by 
Fornberg [13]. However, as Fornberg [ 131 also showed, the error of the maxi- 
mum vorticity on the surface of the body is less than 2% when TV is about 100 
times the size of the radius a in the range of the Reynolds numbers from 20 to 80. 
As far as aerodynamic force is concerned, the error due to the size of Y, is reported 
[ 1, 1 l] to be negligible if r, is of the order of 100 times the size of a; Y, is therefore 
taken to be so in the present computation, also. 

The equations have been solved with the SOR method in which the initial value 
was supplied by the inviscid solution [ 141 for a circular cylinder in a uniform shear 
flow. 

To determine the condition for the discrimination of convergence by iteration, 
the trial computations were executed with various values of AT, Ad and 6,, 6;, 
where S, and 6; are the residuals in iteration of Y and { at a time T, respectively. 
Taking into account these results, those by others [l, 11, 13, 1.5, 161 and the 
cost of computation, 6, and 6: were finally determined to be lo-” and 5 x 10P4, 
respectively. 

3.2. Aerodynamic Force 

The pressure coefficient C,(q) at the point rl on the cylinder surface was obtained 
from Eqs. (10) and ( 11). The coefficient of frictional force C,(q) was obtained from 
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the equation of the shearing stress. Both equations, eon-d~rnensio~a~~z~d with 
respect to pt’: !‘2. are reduced to 

The value of the pressure coefficient presented in this report is the arithmetic mean 
of the values of the pressure integrated clockwise and counterclockwise starting 
from q = 27~ and 0, respectively. The lift coefficient CL and the drag coefficient C,? 
rogether with those pressure components (subscript p) and frictional force corn- 
ponents (subscript s), acting on the body were obtained by the integration of the 
pressure and friction forces on the surface of the cylinder. They are as fellows: 

The Strouhal number here is defined as 

s =?g II 
C!, 

i 14) 

where Jf is the frequency of C,. 

4. RESULTS 

In this section, the characteristics of the solutions by the SPB method at Xc’s 
equal to 20 and 80 will be described in the former part. and the aerodynamic force 
at Re = 80 obtained by using this method will be presented in the latter part. 

To determine the step sizes and the residuals at Re = 20, both solutions by he 
and the method of using the value of !PO fixed to a certain value 

(called the fixed-Y0 method hereafter) were obtained at three spatial step sizes, 
4~‘=2~/20, 2rc./30, 27~140, and three residuals (6,,6Z)=(IOP’. 5x IO-‘), (40P’$ 
5 x 10P’), (10P5. 5 x 10P5) in the range of the values of d7;!Ad from about C.I to 
0.7. Comparing these results with the results of computations [IS, 12, IS] and 
experiment [17] by others, and taking into account the cost of computation., the 
step sizes, etc. were finally determined to be Ad= 2rr/40 (r, + 95.1~): d T= O.Oh. 
6, = IO-‘, 6; = 5 x IO-‘, cxI = 1.84, where x+ is a relaxation factor of @P in ?he SOR 
method. The convergent soiutions were obtained at T= 66100 when hese 
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parameters (the step sizes etc.) were used. Fluid particle moves approximately half 
of the region of computation (about the distance, r,) during this time. 

In the case of Re = 80, the discriminative condition for convergence by iteration 
was first determined by solving the equations with the fixed-Y0 method at 
I/, = E = 0 in the range of about 0.2 to 1.0 of the values of AT/Ad. Three spatial step 
sizes and three residuals were Ad= 21~130, 2x160, 27r/l20 and (6,, 6,) = ( 10V3, 
5 x 10p3), (10 -“, 5 x lo-“), (10p5, 5 x lo-‘), respectively. The maximum dis- 
crepancy of the time mean aerodynamic-force coefficients due to the difference of 
the residuals was less than 2% when Add 2rc/60 and (a,, ai) < (10p4, 5 x 10-4), so 
that (c?~,, 6;) = ( 10p4, 5 x lo-‘) were chosen for both computations by the SPB and 
the fixed-Y0 methods. Since the discrepancy of the time mean aerodynamic-force 
coefficients due to the difference of the spatial step sizes was large when V, # 0, all 
the aerodynamic-force coefficients and the Strouhal numbers in Section 4.2 below 
were obtained as the limiting values as Ad’ -+ 0 by the linear extrapolation from 
convergent values by iteration at Ad= 2n/60 (AT=O.O5) and 4d= 27tr/120 
(AT=0.0125) on the graphs for both the SPB and the fixed-Y0 methods. The 
extrapolated values in this way agreed very well with those by Richardson’s 
extrapolation method [12]. In this case of Re = 80, rrn + 111.3~7, and CY~ = 1.60. The 
convergent and regular solutions were obtained at T+ 100-200 when those 
parameters were used. Fluid particle moves approximately more than half of the 
region of computation during this time. The word “regular” in this report is used 
to mean that the time mean value, amplitude, frequency, etc. of the temporal 
variation are constant. 

The rotating speed ratios and the non-dimensional vorticities are, respectively, 
V,, = 0, -0.5 and E = 0, 0.05 for Re = 20, and l/, = O-- 2.0 and E = -0.0550.10 for 
Re = 80 (E = -0.03-0.10 only for V0 = -2.0). The initial values of Y0 on the surface 
of the cylinder were given by Y0 = s/4 + V, for both Reynolds numbers. 

As described above, it was necessary to obtain the limiting values as Ad2 + 0 
from the convergent values by iteration at two spatial step sizes Ad, = 2rc/60 and 
dd, = 27r/120 for Re = 80. The discrepancy between the convergent values by itera- 
tion were particularly large when V,, #O. The reason for this is thought to be as 
follows: Since the flow near the surface of the cylinder changes from the types of 
flow with strong diffusion at Re= 20 to the type of the boundary layer flow at 
Re = 80, the velocity gradient becomes strong near the surface of the cylinder. This 
results in the great difference between the convergent solutions by iteration at dd, 
and Ad,. For instance, as the integrand ~?,Ylatj i’ =0 in Eq. ( 14) to obtain the surface 
pressure does not change its sign in the circumferential direction when V,, # 0, the 
error due to the finite Ad is monotonously accumulated by the integration. On the 
contrary, the errors due to the finite Ad are canceled out by the integration when 
V,, = 0 because the integrand ~?&‘i)~(~=~ has different signs on the upper and lower 
surfaces of the cylinder. This takes place regardless of using either the SPB or the 
fixed-Y0 method. Therefore, if the error becomes large as the value of Re becomes 
large, it is not caused by the use of the SPB method but by the lack of pertinence 
of the choice of the step size and the discriminative condition for convergence. 
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4. I. 1. Case of a Stead’19 Flow 

The reason for the choice of Re = 20 is because there are many examples of sob- 
tions for a circular cylinder set still in a uniform flow ( V0 = E = 0) and the flow is 
steady. Three methods of determining Yy, on the cylinder surface were compared 
bere. The first method is the fixed-Y, method in which the value of Y0 is fixed to 
zero. The second method corrects the value of ul, by taking advantage of the 
pressure difference dC,( ==C,(2n)- C,(O)) (see the first equation of Eqs. (14)) 
which occurs as a result of numerical computation of the right-hand side of Eq. ( 2 1~ 
Hn this method. Y0 at the next time step is corrected by the relation 

yi+-li= Y&-l AC;, I:-\ ,, _ I : 

where AC, is obtained from one of Eqs. (14) and /I is a relaxation factor which 
should be determined empirically for each solution. This method will be hereafter 
called the A method. The third method is, of course, the SPB method. 

TABLE I 

Values of the Relative Error of AC’,, ‘Pi,, C,. and Cd 

AC 
P 

-v o E C - c 
1 100 (7,J yO 

pmax pmin 

Yo=O A SPB ‘Yo4 i. SP3 

0 0 0.00 0.09 0.25 0 -0.000 -0.001 
0 0.05 17.23 3.01 0.09 0 2.149 3. LOO 

0.5 0 -2.60 0.47 -0.12 0 -0.826 - 0 6 5 ‘0 
0.5 0.05 10.80 2.50 -0.04 0 ! .574 2.i40 

- (! 0 E 
Present 

Yo’O x STB 
Ingham(l1) Present Nakabayashi( 16) 

c a 1 . Cal. 

0 0 0.000 0.000 0.001 0,000 0.003 
0 0.05 0.545 -0.056 -0.143 -(I. 184 

cl.5 0 0.999 1.124 I. 164 l.L2% 
0.5 0.05 1.511 1.060 3 9 2 3 I 

-Vs E 
Present 

Yo’O h SPB 
Ingham(ll! Present Nakabayashi(l6) 

Cal. Cal. 

0 0 1.995 1.998 1.985 1.975 1.995 
0 0.05 1.990 1.952 1.974 1.916 

0.5 0 2.019 2.004 2.005 1 .FS6 
c.5 0.05 1.932 1.963 I .3;3 
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Table I shows the proportions of the pressure difference ACp to the difference 
between the maximum and minimum pressures on the cylinder (AC‘,/ 
(Cpmar - Cpmin) x 100; called the relative pressure error AC,, hereafter), values of 
ul,, and values of C, and Cd at Re = 20. Cpmax and Cpmin are the maximum and 
minimum pressures on the cylinder, respectively. The term “relative pressure error” 
was used for the reason that the pressure difference AC, itself is an error of 
computation. Since AC’, should be zero in physically allowable flow, the relative 
pressure error of AC,, is considered to be a kind of measure to represent the 
adequacy of the value of YO. The symbols, ul, = 0, 1, and SPB in Table I mean that 
the values given in the same columns as those symbols are the solutions by the 
fixed-‘Y,, the A, and the SPB methods, respectively. The relaxation factor was deter- 
mined to be 1= 0.02 after trial computations. In Table I the solutions of C, and C, 
by Ingham [ 1 l] and Nakabayashi [ 161 are also shown. 

The flow obtained at this Reynolds number are all steady. From Table I, it can 
be seen that the values of 1 AC,, 1 are smaller in the II and SPB methods than in the 
fixed-Y0 method and remain within + 1% particularly in the case of the SPB 
method for all conditions of computation. The values of ul, are positive for the 
still cylinder in the uniform shear flow (V,, = 0, E = 0.05), but are negative for the 
rotating circular cylinder in the uniform flow ( V0 = -0.5, E = 0) in both cases of the 
SPB and the ;1 methods. The positive effect by positive value of E and the negative 
effect by negative value of V, on the value of Ye result in smaller positive value of 
Y0 for V0 = -0.5 and E = 0.05 than for V’, = 0 and E = 0.05 in both cases of the SPB 
and i methods. The values of C, for Vn = 0 and E = 0.05 are positive in the fixed-Y0 
method, but are negative in the SPB and the 1 methods. The reason why the value 
of C, for V, =0 and &=0.05 by the 1 method is larger than that by the SPB 
method is considered to be due to the fact that the value of AC,, by the 1 method 
is larger than that by the SPB method. The value of C, by Nakabayashi et al. [16] 
at similar conditions by the II method is negative as well (Table I). The values of 
Cd show only a little difference among the methods of supplying the boundary 
value of !Y,, and agree fairly well with other solutions [ll, 13, 16, 171. 

Consequently, the values of ) AC,, 1 by the SPB and the 1 methods are very small 
compared with those by the fixed-Y0 method, and, except for those at b6=0, 
E = 0.05 and V, = -0.5, E = 0.05 by the A method, well satisfy the condition of the 
single-valuedness of the pressure term. Ug and C,, including plus and minus signs 
by the 2 method, indicate the same tendency as those by the SPB method for each 
of the combinations of V, and c, but the values of AC,, by the J method have larger 
scatter among the combinations of V,, and E than those by the SPB method. This 
implies that an optimum value of the relaxation factor 2 exists for each of the con- 
ditions of computations, so the value of 1 should be determined for each of the 
combinations of V,, and E. On the other hand, the SPB method requires no empiri- 
cal factors such as 2 and always limits the range of scattering of the relative 
pressure errors of AC,, to that narrower than f 1%. All of these facts confirm that 
the SPB method is a very efficient means of determining Y0 and is highly applicable 
to steady flows such as Re = 20. 
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R,=80, v,=-0.5, E= 0 

- vo=o, -.- SpB, ~.*=* SpBH 
-~.- x 

n.21 

i 
FIG. 3. Temporal variations of AC,. 

The case of the unsteady flow (Re = 80) is described in this subsection. The j. 
method may be applicable to an unsteady flow, for instance, to a flow with wa.::y 
YO, by proceeding to the next time step, after AC, =O at a certain time r ~2s 

attained by iteration. This way of application of the A method is extremely time- 
consuming. Therefore, in the present computations, Eq. (17) was applied to the 
unsteady flow in the same way as it was to the steady flow, in which the value of 
/1 was kept constant at 0.02. In this subsection, the spatial and the time step sizes 
are Ad = 2~~160 and d T= 0.05, respectively. 

Figures 3 and 4 indicate the variations of AC, and !FO. respectively with respect 
to time, when V,, = -0.5 and E = 0. The value of AC, by the fixed- !FO method varies 
periodically, and the time mean of AC,, i.e., dc, (the time mean value of any quan- 
tity is distinguished by the symbol - over the quantity hereafter): is as large as 
about 0.1 (which is equivalent to about 3 % in terms of the time mean of AC,, ;. 
The value of AC, by the SPB method varies also periodically, but the relative error 
of its amplitude remains within the range of about I- 1%. Its value of AC, Is always 
nearly zero. The value of AC, by the /2 method keeps reducing itself in a fluctuating 

R,=EO , v,=-0.5. E = 0 

- Vo~O, -.-.- SpB, ----- sp4,y 

1.0 
? 

-..- k 

FIG. 4. Temporal variatioes of Yc, 
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R,=80 , v,=-0.5, E = 0 

- ‘vo=o, -.-.- SPB, ----- SPBH 

0.q’ ’ ’ ’ I ’ ’ ’ ’ ’ 
20 LO 60 80 100 

T 
FIG. 5. Temporal variations of C, 

manner, and its time mean appears to approach dc,, = 0 in this case. The value of 
dc, by the 1 method, however, kept decreasing from a positive value to a negative 
one in another case. The value of ul, (Fig. 4) is, of course, always zero in the 
fixed-Y0 method. The value of Y0 by the SPB method approaches fluctuatingly a 
certain time mean value which is approximately constant in the range of 
100 < T< 200 as will be shown later in Fig. 8. The value of Y0 by the A method, 
on the other hand, has a trait of approaching to a certain time mean value as in 
the SPB method, but is always smaller than the value of ul, by the SPB method. 

The variations of C, and C, with respect to time in the case of V, = -0.5 and 
E = 0 are shown in Figs. 5 and 6, respectively. The value of C, by the SPB method 
is smaller than that by the fixed-Y,, method while the value of c,, i.e., the 
amplitude of C,, by the SPB method is larger and more stable than that by the 
fixed-Y,, method. The value of C, by the A method is larger than that by the SPB 
method owing to positive xp. cr by the A method is still getting larger and does 
not seem to reach a regular state yet. In the case of Cd (Fig. 6), both the value C, 
and the amplitude cid by the SPB method are a little larger than those by the 
fixed-Y,, method. Cd by the 1 method does not seem to reach a regular state yet. 

R,=80 , v,:-0.5, E = 0 

- ‘$,=o, ---.- S,PB, ----- SPBH 

2.0 - -..- h 

cd SPB.SPBH 

FIG. 6. Temporal variations of C,,. 
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Comparison of these temporal variations of C, and C, with those of Ye/3 in Fig. 4 
in the case of the SPB method shows that C, and C, attaim a regular mode o!’ 
oscillation before the time mean value of Y,, stabilizes at a certain constant value. 

The above results indicate that the value of AC, has a stronger influence on Cl 
and C, than the value of IT/, itself. Since C, and C, by the SPB method do no; con- 
tain the contribution from AC,,, they must be values better reflecting the computed 

ow around the body. However, AC, even by the S method flu~ctuates 
periodically about AC, = 0 (Fig. 3), which may have a certai &tense on the corn- 
puted values of CL and C,. As stated in Section 2.2, Eq. (7) is the relation obtained 
by applying Eq. (4) to the case of a rotating circular cylinder. Hence. the correction 
term of “1”: of Eq. (,7) (the terms except for the first term of the right-hand side) has 
the same order of magnitude O(dT) as that of Eq. (4). The SP method (Eq. (3)). 
on the other hand, was the method of extrapolating pr’ ‘T in Ec;. (7) with the 
accuracy of the second order of AT. Therefore, the accuracy of Eq. (9) is O(L!T’* 
3 T dfa, La T ds’) as that of Eq. (4 j is. Obtaining the terms of O(d T’, A TOn’j by the 
Taylor expansion of Eq. (7) and adding these terms to the right-hand side of 
Eq. (9) yield the following relations: 

- 

The method of using Eq. (18) instead of Eq. (9 ) may be called the “method of seif- 
pursued boundary value with higher order” and will be abbreviated as the SPBH 
method hereafter. The solutions by the SPBK method are also shown in Figs. 3 and 
4 in which the SPBH method was applied for T > 30 after the SF 
applied for 7-G 30. Applying the SPBH method redaces the ampht 
nearly zero and the value AC, is, of course, zero in this case as shown in Fig. 3 
Hence, it can be said that using the time and space differences with higher-crder 
accuracy for the terms coming from the term 2~7,; ZT in Eq. (9) can always satisfy 
the condition of AC,> = 0. However, the value of Ik”,, C,, and Cd by the SP 
method show almost no change compared with those by the SPB method as shown 
in Figs. 4. 5? and 6, respectively. 

As far as the initial value of Y0 is concerned, it has virtualiy no effect on the solu- 
e 4 shows both results obtained with the initial values of Y0 = sj4 i YQ 
in the ordinate) and Y’, = I.0 (symbol C in the ordinate). hub: no 

difference can be seen between the results printed out for T3 30 in the figtire. 
However, the convergent and regular solution for V0 = - I.0 and E = 0 was 
obtained faster when the convergent and regular solution for V0 = -0.5 and E - E 
was applied to the initial values on the inner mesh points than when the mviscid 
solution was applied. These facts imply that the value of py, by the SP 
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R,=80, V,=O , ~=0.05 

- \vo=o , -.- SPB 

FIG. 7. Temporal variations of dC, 

dominated by the values of Y on the inner mesh points, which is a natural conclu- 
sion from Eq. (9). The characteristics of the SPB and SPBH methods above remain 
unchanged if Ad= 274120 and AT= 0.0125. 

Finally, the results which showed instability when the SPB method was applied 
are shown compared with the results of the fixed-Y, method in Figs. 7 to 10. These 
figures show the temporal variations of AC, (Fig. 7), Y0 (Fig. 8), C, (Fig. 9), and 
C, (Fig. 10) in the range of 100~ TG200 for the case of V0 =0 and ~=0.05. 
Figure 8 also shows Y0 with nearly regularly periodic fluctuation for the case of 
V, = -0.5 and E = 0 which is an example of stable solution. In the case of V0 = 0 
and E = 0.05, instability begins from T + 130 as seen from the figures. When the 
SPB method is applied, the instability visually appears not in ACp but in !YO for 

R,=80, Vo=O , ~=0.05 

- ‘Jo=0 a-.- SPB 

R,=80, SPB 

2.0 

i 

V,=0. E=0.05 ! 
\ 
\,./ 

FIG. 8. Temporal variations of ‘PO. 
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R,=80 , v, =O , E=o.o5 

- wo=o ,-.- SPEI 

FIG. 9. Temporal variations of C, 

T> 130. On the contrary, however, it appears in dC, for T> f30 when the fixed- Fir0 
method is applied. On the other hand, instability scarcely shows itself in C, in the 
case of the SPB method, but is vividly seen in C, in the case of the fixed-Y/, method 
for T> 130. These examples show that the instability appears in the temporal varia- 
tion of Y0 in the case of the SPB method, and in those of dC,, Cl, and Cd in the 
case of the fixed-Y0 method. The same kind of characteristics as in the case of the 
SPB method appears in the case of the SPBH method as well when the computa- 
tion is semi-srabie. Here, the semi-stability is defined, although the definition is a 
little ambiguous, as the states that the computation is possible at least up tih T + 1% 
and that the time mean values, amplitudes, and frequencies of the temporal varia- 
tions of C, and C,, show a tendency of approaching certain constant values, The 
cases shown from Fig. 7 through 10 are examples of the most stable computations 
among the semi-stable ones. 

Although the characteristics when the solution by the SPB (SPBH) method is 
semi-stable are as shown above, the stability analysis of the computation using this 
method is very difficult. 

When an extension of Neumann’s method involving the boundary conditions 
is applied to the present problems, the parameters involved in the error amphfi- 
cation matrix are found to be the Courant numbers C//1( = Vs4T,‘4&j, 
G,/h( = V,, dI’!ddh), the Reynolds number Re, 4T/(Re dti’h’), 4T, and cxI. The 

Re=80, V,=O , ~r0.05 

- uo=o -.- , spg 

1.5 - 
Cd c .__, ,-.. ,-.- - ,_ ..- .- B 

1.0 I : I 
100 150 200 

FIG. 10. Temporal variatiox of Cd. 
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parameters V0 and E do not appear explicitly. The ccti among the parameters is 
easily obtained, and the iteration method to solve the streamfunction equation (the 
SOR method) is stable when 0 d CQ ,< 1.6. Inclusion of the scale factor h( 3 1) in the 
parameters can be avoided if the region of the computation is fixed to a certain 
value of r,,J + 111.3~). Even if these factors are considered, the relation among the 
parameters to limit the spectral radius of the error amplification matrix to the value 
less than unity is extremely complex and has the general form, 

AT C,, C,, Re, ~ Re Ad* 
= 0, 

where only independent parameters are included. Since the stable region which is 
numerically obtained from the above relation does not necessarily agree with the 
region of the resultant stability of the numerical solution of the present problems 
(called the stable region hereafter), the stable region using the SPBH method at 
Re = 80 was numerically obtained by changing the values of the above parameters. 
The way to obtain the stable region is to solve the present problem at various 

Stable Unstable I-V,, E 1 
Case(a) 0 ----- l (0.0) 

Case(b) A -_-._ p (2.01 
Case(c) q -..-..- w (2, 0.1) 

wo z 0 : v (-V,.El=(2. 0) 

0.25 

t 

0 ( -v. , E ) = ( 2 , 0.1) 

AT 0 

ReAd* 
0.20 Re=BO , SPBH 

I I I I I I 

0 0.2 0.4 0.6 0.8 1.0 
AT 
.d 

FIG. 11. Extent of stable regions. 
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values of AT by keeping the value of Ad constant in the range of 
dd= 27r/2&27r/120, where the initial values on the inner mes points are the same 
as described in Section 3.1. The stable computation is defined as the computation 
in which the iteration procedure to obtain yl at a time T converges within the num- 
ber of iterations assigned, and in which the temporal variations of Ci and C, are 
regular for a long enough time interval after the fluid particles have passed mire 
than half the region of computation. The boundary of the stable region is semi- 
stable. Three kinds of combination of the values of ( VO, E) are tested, that is, (0, 0) 
(Case (a)), ( - 2.0,O) (Case (b)), and ( -2.0, 0.1) (Case (c j). The results are shown 
in Fig. 11. The ordinate of the figure A T/Re Ad’ ( = (U, A T’/As),:( ?I,. As+ )) is the 
diffusion number d or the ratio of the Courant number C,. to the cell-Reynolds 
number IX, based on the representative velocity tic, where AT’= L! AT/C:,., 
As= Zna,lN (Eq~ (6)). The abscissa AT/Ad= U, AT’/As is the Courant number 
based on U,. Since the definition of the semi-stability has a certain ambiguity. the 
boundary of the stable region has a certain width. Many c putations and much 
cost are required to determine this width and so the bo es were not deier- 
mined precisely. This is the reason why the boundaries a t drawn with solid 
lines. Only the symbols near the boundaries, not those far from the boundaries, am 
shown in the figure. From the figure, it is seen that the upper limits of the values 
of C, (the abscissa) and d (the ordinate) do not exist in Case (a) within the range 
of the tested values of the parameters. The upper limits of the values of id in 
Cases (b) and (c), however, are low at approximately 0.08, and the lower Emits are 
a little higher than that of Case (a). The upper limits of the values of S,, become 
lower in the order of Cases (a), (b), and (c). T us, the stable region becomes 
narrower in the order of Cases (a), (b), and (c). The extent of the stable region 
depends also on the value of I’,. The results of the computation of Case (b) showed 
that the stable region became narrower in the order of t;, = - 1.0 - 2 0 and - 1 9Z; -I 
that is, the stable region in this case is wider when the value of / irO 1 is smaller. The 
results by the fixed-Y0 method with Y0 = 0 for Cases (b) and (c) are also shown 
in the figure by the symbols V and 0, respectively, where the coordinates of 
respective points are AT/Ad+ 0.2387, ATiRe Ad” + 0.0285 and d’r/dd+ 0.3549. 
AT,/& Ad’ + 0.1140. The computation by the fixed-Y0 method is semi-stable, but 
that by the SPBH method is completely unstable at these points. 
of the stable region of the SPBH method is approximately equal EO that of the 
fixed- Y0 method with !YO = 0. It should be noted here thal the result of the com- 
putation by the fixed-Y0 method with Y0 = 0 does not satisfy the physical condition 
of AC,=O. 

So the stability of the fixed-Y0 method with YO#O wa checked at the semi- 
stable point of the SPBH method (AT/Ad + 0.5730, AT e Ad’ + 0.0684). l’ke 
result by the SPBH method at this point shows that the solution reaches a regular 
state at T+ 150 and becomes unstable after T + 180. At this regular state, Y9 + 8.2. 
The computation by the fixed-Y0 method with Ya = 8.2 was very unstable and in 
fat? could not be continued long enough. These examples do not show that the 

‘II method is more stable than the fixed-Y9 method or that the former is Icss 
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stable than the latter. The fact that the extents of the stable regions of the SPB and 
the fixed-Y0 ( Y0 = 0) methods are nearly equal to each other and that the extent 
of the stable region of Case (b) depends on the value of ) V, / rather suggest that the 
difference of the extents of the stable regions of Cases (a), (b), and (c) is introduced 
not by the use of the SPBH method but by the change of the local Courant and 
cell-Reynolds numbers brought by the rotation of the cylinder (V,) and the velocity 
gradient of the flow field (E). It should be mentioned finally that the solution of the 
case of E # 0 (V, = 0 or V0 # 0) is always less stable than that of the case of V, # 0 
(E = 0) in both the SPBH and the fixed- Y0 methods. 

Thus far, the computed results, AC,, YO, C,, and C, by the SPB (SPBH) 
method, the 2 method, and the fixed-Y0 method have been compared with one 
another, from which the following characteristics of the SPB method have been 
revealed. First, use of the SPB method can always satisfy the condition of the physi- 
cally allowable flow field (AC, = 0). regardless of whether the flow is steady or 
unsteady. Second, the periodic fluctuation of AC, about dc, =0 when the SPB 
method is applied to an unsteady flow can be removed by approximating the time 
derivative du,/?T by the higher-order time and space differences (the SPBH 
method). Third, the solutions by the SPB method are not affected by the initial 
value of Y,, at least for T> 30. Fourth, the instability of the computation when it 
is semi-stable appears in the temporal variation of Y0 in the case of the SPB 
(SPBH) method and in the temporal variations of JC,, C, , and C, in the case of 
the fixed-IV, method with Y0 = 0. Finally, from the resultant stability analysis, the 
width of the semi-stable region of the SPBH method is seen to be narrower than 
that of the fixed- Y0 method with Y,, = 0. 

4.2. Aero~<~xamic Force Computed by the SPBH Method 

The results of computation for the range of V, = g-2.0 and E = -0.05410 
(E = -0.03 0.10 only for V,, = -2.0) at Re = 80 by the SPBH method will be shown 
here in comparison with those [ 18-201 by the fixed-Y,, method with Y0 = 0. The 
aerodynamic forces in the case of the fixed-Y0 method were determined in the range 
of time in which the temporal variation of C, is regular. The aerodynamic forces in 
the case of the SPBH method are easier to determine than those in the case of the 
fixed-Y0 method, since the aerodynamic forces are more stable and only a little 
affected by the change of the value of Y,, as mentioned in the preceding subsection. 
They were determined either in the range of time in which the time mean value of 
Y0 was constant or in the range of time in which the time mean value of Y0 was 
constant when the computation was destabilized after the time mean value of Y0 
was constant for a long enough interval. Figure 12 shows the surfaces of the lift 
coefficients C, as the functions of V,, and E. Both surfaces by the SPBH (black sym- 
bols) and the fixed-Y0 (white symbols) methods have small double curvatures and 
steep gradients in the direction of increasing value of 1 V0 I. As the value of E 
increases while the value of V0 is kept constant, the value of C, by the SPBH 
method decreases and the i-ate of decrease is larger when the value of 1 V,, 1 is larger 
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YJ,‘= -0.05 -0.03 0 Cl 0 0.05 A O.iO 0 
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FIG. 12. Dependency of c, on E and ET>. 

while the value of C, by the fixed-Y0 method increases almost linearly and the rate 
of increase is smaller when the value of / V0 / is larger, and in fact the value of c‘, 
decreases a little when I’, = -2.0. It is interesting to see that the value of C, of the 
still cylinder in a uniform shear flow (I’, = 0, E # 0) increases and becomes positive 
with the increase of E in the case of the fixed-Y0 method just as it does in the results 
of the fixed-Y,, method by Tamura et al. [15], while in contrast the value of c’I 
decreases and becomes negative with the increase of e in the case of the SP 
method (the value of (?i by the SPBH method is also negative at positive values of 
E when Re = 20 like that of Nakabayashi et al. Cl61 ). When c, is divided into com- 
ponents, the components due to frictional force T,, by both methods are small and 
almost equal to each other, and the pressure component C,, occupies more than 
90% of T, in both cases by the two methods (this is not shown herej, Figure I3 
i I’, =0, E = 0.05) shows the pressure distributions on the surface of the circu1a.r 
cylinder from which c,,‘s were obtained. As seen from the figure, C,(ci) by the 
fixed-Y0 method is higher on the lower surface of the cylinder (a = 130’-360”) and 
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Re=80 , vo=o , E=O.O5 

SPBH T Jlo=O T 
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cp 

FE. 13. Pressure distributions on the circular cylinder. 

lower on its upper surface (tI= O”-180’) than by the SPBH method. The dis- 
crepancy between the results by both methods results in dc, + 0.311 in the case of 
the fixed-Y0 method and dcp + 0 in the case of the SPBH method. That is, the fact 
that C, by the fixed-y,, method is larger than that by the SPBH method is caused 
by the error of pressure ACp. The same thing occurs at the larger values of ) V, /, 
also. Therefore, the decrease of PI with E by the SPBH method is considered to. be 
nearer to the truth as AC, is always zero in this case. The surface of the drag coef- 
ficients Cid are shown against the parameters V0 and E in Fig. 14. The slope of the 
surface of C, are far smaller than those of C,. The values ( 0 and 0 ) of C, in a 

E -0.05 -0.03 0 0.05 0.10 

YO’O o A q 

SPBH + v 0 A n 
(1) 0 Okajima et al. 

0 Tamura et al!lsJ 
@ Tritton(l7) 

t 
Re = 80 

0.10 

0 - -005 1.0 2.0 . 
-"0 

FIG. 14. Dependency of C, on E and V,,. 
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FIG. 15. Dependency of each of the components of 5’,! on E and t’i3. 

uniform flow (V, = c = 0) by the two methods are almost equal to each other, but 
are a little larger than the values of computations [Is 151 and of experiment [I?] 
by others. The value ( 3 ) of c, in a uniform shear flow ( V0 = 0) computed with 
the fixed-Y0 method by Tamura et al. [15] increases a little with the value of E 
while those (white symbols) with the present fixed-y”, method decrease a little and 
the rate of decrease is larger when the value of 1 I’, / is larger. On the other band, 
the values (black symbols) of c, by the SPBH method are almost equal to those 
(white symbols) by the fixed-Y0 method when V. = 0. The discrepancy between the 
values of rid by the two methods is very large when V0 = - 2.0. Figures 15a and b 
show the component due to the pressure force CidP and that due to the frictional 
force c, of Cd, respectively. The discrepancy between the values cjf C’dJ by the two 
methods is very little as seen in Fig. 15b, while that of C, is large especially when 
V, = -2.0. Therefore, it is obvious that the discrepancy between the values of i?, 
by the two methods comes from the difference between the values of the pressure 
component of Cid. In the case of the fixed-Y0 method, the pressure error AC, is as 
large as +0.2 for da’= 2rr/60 and -0.3 for Ad= 2~ccj120 when V. = - 2.0 and E = 9. 
Although this is an extreme case, the value of AC, is never equal to zero for any 
combination of the values of (V,, E) except for the case of V0 = E = 0. T’nis pressure 
error produces the errors of the values of T, and T, by the fixed-Y9 method and 
is considered to be the main reason for these. 

Figure 16 shows the surfaces of the amplitude of Cl, i.e., c:; against tiie 
parameters V0 and E. The experimental result ( 0 ) of the still cylinder in a uniform 
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FIG. 16. Dependency of ?, on E and V,. 

flow by Okajima et al. [Zl] and the values ( 0 ) of the still cylinder in a uniform 
shear flow computed with the fixed-Y0 method by Tamura et al. [lS] are also 
shown in the figure. Okajima et al’s experimental value is smaller than the value 
( 0 ) of C?, at V, = E = 0 by the SPBH method. This is considered to be due to the 
fact that the result of Okajima et al. is affected by the friction at the ends and the 
inertia of the cylinder. The discrepancy between the values by the present fixed-Y0 
method (white symbols) and those by Tamura et al. ( 19 ) when V, = 0 and E # 0 is 
fairly large and is considered to be due to the fact that Tamura et al.3 values were 
obtained at Ad = 24.50 while our values by the fixed-Y0 method were the limiting 
values as Ad’ -+ 0. The surface obtained by the SPBH method is always higher than 
that by the fixed-Y0 method except for the point of ( VO, E) = ( -2.0,O) as shown in 
Fig. 16. In the fixed-Y0 method, the value of Y0 is fixed at zero, but the value of 
Y0 fluctuates in the real physical flow. That is, the fixed-Y0 method puts a hoop 
on the flow near the cylinder and reduces the fluctuation of the flow around the 
cylinder. Therefore, the surface of c, by the SPBH method is considered to be 
nearer to the real flow phenomenon than that computed by the fixed-Y0 method. 
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FIG. 17. Dependency of S,, on E and 1’” 

Figure 17 shows the Strouhal numbers S,, of c’I computed with the two methods 
together with the experimental results by others [17, 21-X3] and the computed 
resuhs with the fixed-Y0 method by Tamura PI ai. [23]. The vahres by the :wo 
methods agree well with each other and with the experimental values as shown in 
Fig. 17 when V. = E = 0. The values of S,, for the case of VC = 0 and E # 0 by rhe 
two methods stay well inside the range of experimental scatter ( I- _ ~ _ _ ; %y 
Tamura ef al. Tn the case of S,,, the solutions by both methods do not dialer so 
much from each other. The flow is seen to be steady for V, = - 2.0 and E < 0 even 
at Re = 80. 

5. CONCLUDING RzhfARm 

ew method (called the SPB methodj of determining the boundary value of Y 
on the surface of a body with an arbitrary profile was developed for cases when the 
Navier-Stokes equations formulated in terms of stream function yi and vorticity < 
are numerically solved. Sample computations were carried out for a rotating 
zircular cylinder in a uniform shear flow at relativeiy low Reynolds n~um~bers 
(20, 80). The results are summarized as follows: 



248 YOSHINO, HAYASHI, AND WAKA 

(1) Equation (4) was obtained which can supply the value of Y on the 
surface of a body with an arbitrary profile without using any empirical factor, 

(2) Equation (4) was applied to determine the flow around a rotating 
circular cylinder in a uniform shear flow for Re = 20 and 80. A comparison of 
this SPB method with other methods shows the following results: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

The SPB method always satisfies the condition of physically 
allowable flow (dc, = 0) regardless of steady and unsteady flows, 

The periodical fluctuation of 4C, about 4C, = 0, which takes place 
when the SPB method is applied to the unsteady flow, can be 
removed by higher-order time and space differences (the SPBH 
method), 

The solutions for T> 30 by the SPB method are scarcely affected by 
the initial value of Y,,, 

The extent of the stable region by the SPBH method is narrower 
when V,,#O and s#O than when I/,=&=0. 

When the computation is semi-stable, the instability appears in the 
temporal variation of Y, in the case of the SPB (SPBH) method and 
in the temporal variations of AC,, Cr, and C, in the case of the 
fixed-Y,, method with Y0 = 0. The width of the semi-stable region of 
the SPBH method is narrower than that of the fixed-Y0 method with 
!Pc)=o. 

(3) The aerodynamic forces on the rotating circular cylinder in a uniform 
shear flow were computed by using the SPBH method in the ranges of V, = G-2.0 
and E = -0.05-0.10 (E = -0.03-0.10 only for V, = -2.0) at Re = 80. The results are 
as follows: 

(3.1) The value of C, increases very rapidly with the increase of the value 
of 1 V, 1, but decreases gradually with the increase of the value of E. 

(3.2) The value of C, decreases with the increase of the value of 1 V, 1 at the 
constant value of E. It decreases at the small constant value of I V,l, 
but increases at the large constant value of I V, I when the value of E 
increases. These changes of the value of c, are due to the changes of 
the value of the pressure component C,. 

(3.3) The value of c, by the SPBH method is larger than that by the 
fixed-Y0 method with Y0 = 0 except for the point of steady flow, and 
increases with the increase of the value of E. 

(3.4) The value of S,, by the SPBH method is not much different from that 
by the fixed-Y0 method with Y,, = 0 except for the point of V0 = -2.0 
and E = 0.05, and decreases gradually with the increase of the value of 
E at larger values of E. There exists a steady flow even at Re = 80 when 
the cylinder rotates in a uniform shear flow. 
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