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When the Navier-Stokes equations formulated in terms of stream function ¥ and vorticity
¢ are numerically solved, we encounter the problem of determining the value of ¥ on a body
in an external flow. Although this problem is especially important in cases with a shear flow,
an unsteady flow, or a flow around a rotating circular cylinder, there are no efficient methods
available which do not use empirical factors. The authors propose here a method of automati-
cally determining the value of ¥ on a body with an arbitrary profile without using any empiri-
cal factors (named the SPB method) and apply this method to the case of a rotating circular
cylinder in a uniform shear flow. A comparison of the results by the SPB method with those
by the method of fixing the value of ¥ on a body and by the conventional empirical method
showed that the SPB method is very efficient and is applicable to both steady and unsteady
flows. Of course, the method always satisfies the condition of single valuedness of the pressure
terms of the equation of motion. Through applying the SPB method to the case of a rotating
circular cylinder in a uniform shear flow, the aerodynamic forces acting on the cylinder were
obtained and the lift force was found to decrease as the velocity gradient of the shear flow
increases when the rotational speed of the cylinder was kept constant. € 1991 Academic Press, Inc.

1. INTRODUCTION

When the Navier-Stokes equations formulated in terms of stream function ¥ and
vorticity { are numerically solved, there are many factors to encounter such as
choice of numerical schemes pertinent to the flow of interest, decision of the dis-
tance to the outer boundary, treatment of the boundary conditions on the surface
of a body and the outer boundary, and so on. One important factor is the deter-
mination of the level of ¥ on the other boundary when either of the ¥’s on the
surface of a body or the outer boundary is given fixed to a certain value.

Surprisingly, few studies on how to treat the boundary value of ¥ on the surface
of a body have been made among these factors. Okajima et al. [1] numerically
obtained the aerodynamic force acting on circular and elliptic cylinders in a
uniform flow by using a fixed value of ¥ on the surfaces of the bodies and Imai's
asymptotic solution [2] on the outer boundary. In their paper, they assert that the
pressure difference 4C,(= C,(2n) — C,(0)); ie., the line integral of pressure along a
closed curve around and on a body is not equal to zero when the time and spatial
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step sizes are not adequate. This pressure difference AC, ought to be zero, since
pressure is single-valued. Taking advantage of this property of 4C,, Matida er zl.
[37 proposed an iteration method of determining the value of ¥ on the surface of
a square cylinder immersed in the Poiseuille flow in a channel. Daiguii [4] showed
the necessary condition for a flow field to be allowable physicaily. This condition
is that a line integral of the pressure term of the equation of motion along 2 closed
curve around a body should be zero. After these studies, however, there has not
been much progress made on the study of the treatment of the boundary value of
¥ on the surface of a body.

Many investigations [5-10], on the other hand, have been carried out on the
aerodynamic force acting on a rotating circular cylinder in a flow. Not only the lif:
force due to the Magnus effect but also the induced drag force due to the vorticity
shed into the wake have been generated [5, 6] on the rotating circular cylinder
even in purely two-dimensional flow. This induced drag cannot be separated from
the so-called induced drag of a finite wing in actual experimental studies. In such
a case, a2 numerical method is a powerful means as it is possible to realize a purely
two-dimensional flow, but this aiso introduces the problem of treatment of the
boundary value of ¥ on the surface of the cylinder. Facing up to this problem,
Ingham [117] imposed the condition that the position on the outer boundary of the
stream line lying on the rotating circular cylinder should be a function of the hifi on
the cylinder. His method, however, requires the known value of the lift which is to
be computed and is hence an iteration method. The problem becomes further com-
plicated when a rotating circular cylinder is immersed in & shear flow. If the value
of ¥ on both the surface of the cylinder and the outer boundary are given fixed.
the abselute value of the pressure difference |4C, | is rightfully larger, based on the
authors’ experience, when the speed of rotation of the cylinder is faster and when
the velocity gradient of the shear flow is larger. After many trials, the authoers found
a method of determining automatically the value of ¥ on the surface of the cylinder
so that AC, is always zero. Therefore, this paper is primarily concerned with the
characteristics of the results produced by this method, though the computed Hft and
drag are also presented.

First, the method developed here is described for a body of an arbitrary profile
as well as a circular cylinder with the orthogonal curvilinear coordinates. Second,
the characteristics revealed from the results computed by applying the method 1o
the case of a rotating circular cylinder in a uniform shear flow with relatively low
Reynolds number are described, and finally the computed aerodynamic forces are
presented.

2. METHOD OF DETERMINATION OF ¥ CN A BODY

2.1. The Case of a Body with an Arbitrary Profile

The flow 1s assumed to be two-dimensional and incompressibie. Figure 1 shows
the coordinate system around a body with an arbitrary profile. Here, (s, ) repre-
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Fic. 1. Orthogonal curvilinear system and velocity components.

sent the orthogonal curvilinear coordinates, and » = constant for the closed curve
C. When V(v,,v,) and § are the velocity and vorticity vectors, respectively, the
equation of motion is expressed as

av V2 . Vp
Srov() veee e

where p is fluid density, v kinematic viscosity, T time, p pressure, and V'=|V]|.
Line integration of Eq. (1) along the closed curve C, which is the C attached to
the surface of the body (n» =0) yields the following equation:

2 14
p v - du, ¢ .
—+—=)=— ds—v| —d .
Lod<p+2> JcoaT s ‘jcoé’n‘s-i_JcoU"" ds (2)

Equation (2) with the left-hand side equal to zero is equivalent to the condition
given by Daiguji [5]. The velocity component v, is equal to zero on the surface of
the body. Although dv,/T is equal to zero by the no-slip condition when the sur-
face of the body is in steady motion parallel to the surface itself, that value is not
equal to zero when the surface is in unsteady motion.

Approximation of dv,/0T by a forward difference gives

v, 1
0T AT 4n

{(P,— W) T — (P, — V)" } + 04T, 4n), (3)

where ¥7 and ¥ are the values of ¥ on the surface of the body and at one spatial
step 4n from the surface in the # direction at time 7, respectively. 4T is a time step.
This approximation is accurate to the first order with respect to AT and 4n as
shown in Eq. (3). The line integration, on the other hand, along the closed curve
C, is approximated by the relation

N
wa#ZAJ%
C

i} i=1

where A is a differentiable function and C, is divided into N spatial steps. This
approximation has equal accuracy to the trapezoidal rule, ie., is accurate to the
second order with respect to 4s when C, is a closed curve. Introducing Eq. (3) into
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{2) and approximating the line integral by the above relation vield the following
relation to determine ¥, on the surface of the body after rearrangement

¥,'T+JT WT 1 i y;deT_ég_l; - i g[;T_Ai
Kadsifdng 200N dng 2T e,
" a‘/ o 5 .
—vdT(Q _—"ds> }+O(AT:ATAn,ATAs*}, (4
~Codn

since the left-hand side of Eq. (2) is equal to zero. 45 and A5 in the above relations
are spatial step sizes in the s and »n directions, respectively. The reason why the
viscous term in Eq (2)is left in Eq. (4) as it is is because 0{;én may be represented
m either way by ¢ or by ¥. If all the values are known at time T, the entire right-
hand side is known except P! “7. Therefore, the value of ¥ on the surface of the
body at time T+ 4T; ie, ‘PT”T can be determined without any trial determina-
tion of empirical factors if ¥[/*7 is approximated by the known values at
T< T+ A4T. The accuracy of determmmg pl+47 by Eq. (4) is the second order,
ie., O{AT? 4TAn, ATAs*) as shown in Eq. (4). In addition to this, the order of
magnitude of the correction term of ¥ (the second term of the right-hand side of
4)) is O(4T).

2.2. The Case of a Rotating Circular Cylinder

The method described in the preceding subsection will be applied to the case of
a rotating circular cylinder in this subsection. Figure 2 shows the coordinate system
used. The relations of the coordinates (£, #) with exponential scaling in the radial
direction to the cylindrical coordinates (r, ) and the Cartesian ones (x, y} are

¢=log.(r/fa)  x=ae‘cosy
n=0; y = ae® sin 1.

Fig. 2. Coordinates about the circular cylinder and boundary condition at far fieid.
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where ¢ is the radius of the circular cylinder. Equation (4) with the coordinates
system of Fig. 1 is converted to the equivalent equation with the coordinates system
of Fig. 2 by the coordinate transformation. Letting the spatial step size in the
direction of Fig. 2 be 4d and also taking the same step size in the & direction as in
the # direction, 4s; and 4n, in Eq. (4) are then represented as

As,=a Ad, An; = a(e?? — 1), (6)
Substituting Egs. (6) for 4s; and 4n; in Eq. (4) yields

vATAd( 2”@(1’7)T
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Since the order of magnitude of the correction term of ¥ is O(4T), the unknown,
PT+4T is extrapolated by using the values of ¥, at time T and before, with the
accuracy of the second order O(AT?). The term ¢{/6¢ is approximated by using the
same form as that used in the relation (see Eq. (14)) to obtain surface pressure, in
the case of which the accuracy is O(4d?). Thus $7+47 and &(/d¢ are approximated
as

PT-4T £ T _ QT -24T 4 PT-34T
a1 (8)

o e __35’ 4V _r .
" 2Ad( GoT4¢, Sz)

Equation (7} is then reduced to

AT - ;>

g/gMT:yfg+(ar7{—2v7{—m+Y?{—3AT)+EB—(*3CO+4C1—CZ)T
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where Re(=2aU,/v} is the Reynolds number, and ¥, and {, are ¥ and ( at the dis-
tance k 4d (k=0, 1, 2) from the surface of the cylinder, respectively. Equation (9)
for the case of a circular cylinder is equivalent to Eq. (4) for the case of an arbitrary
profile.

To derive Eq. (9), the second and fourth terms of Eq. (7) were approximated by
Egs. (8). However, the terms (74" — ®T) in Eq. (7) may be approximated by
the terms (P7— PT-47) if AT is sufficiently small in comparison with the period
of the temporal fluctuation of ¥,. Also,0/0¢ in Eq. (7) may be approximated by
the terms of ¥ instead of the form of the second relation of Egs. (8). In this method
of approximation, however, ¥’s at more points farther away from the cylinder are
required, which results in a larger pressure difference 4C,, since the flow velocity
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near the surface of the cylinder rapidly changes and since the pressure of the surface
of the cylinder is computed by using the same form as Egs. (8), as will be described
later. These aspects mentioned above were confirmed by the authors through trial
computations using both of these approximations instead of Egs. (8). The method
of treatment of ¥, on the cylinder described here is termed the “method of seli-
pursued boundary value” and will be abbreviated to the “SPB method” hereafter.

3. METHOD OF SOLUTION

3.1. Governing Equations, Boundary Conditions,
and Methods of Solution

The vorticity transport equations and the vorticity equation take the forms in the
coordinates (£, n),

"or qaE P Re

LA awar dwer 2 (2% &N
',_s+ 5 s__(s s;
/

where all length, stream function, and vorticity have been non-dimensionalized with
respect to the radius ¢ and the velocity U, far upstream on the x axis;
W=h:=h,= e%) is a scale factor, T is time, and Re is the Reynolds number
{=2al,/v).

The time derivative of Egs. (10) was discretized with a forward difference scherae.
The spatial derivatives of Eqgs. (10) were discretized with the arithmetic mean [12]
of a central difference scheme at each of time T and T+ A7 in the same way as
Okajima et al. [1] have shown in their report.

As rtegards the boundary conditions, a no-slip condition was applied tc the
velocity on the surface of the cylinder and the boundary condition supplied as the
outer boundary is that of the velocity distribution of the uniform shear flow. These
are formulated in (£, ) coordinates as

oY c¥
—a V= =0, V= ——=V,
rEats hén ! hee 0

r=o0u, = U/l +ee*siny), v, =0,

where 1, is the rotating speed ratio, ie., the ratio of the circumferential speed of
the surface of the cylinder to the velocity U,, and ¢ is non-dimensional vorticity
expressing the velocity gradient at the far field. Since Eqs. (10) are of an eliiptic
nature, one condition for each of the variables ¥ and { was supplied here along
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each edge. On the surface of the cylinder, ¥, was supplied by Eq. (9) and {, there
was approximated by the relation,

3 , (Y
Co= = g (V= P Voho ad)= 2 (32). (12)

where A, is the scale factor at the distance k Ad (k=0, 1) from the surface of the
cylinder. ¥ and { on the outer boundary take the forms,

Y. ;=€  sin 11,-+2e2'5°°(1 —cos 21;)
(13)

The # direction (subscript j) was divided into N equal intervals starting from the
trailing edge of the cylinder (7 =0) so that 4d=2n/N. The ¢ direction (subscript i)
was also divided with equal step size Ad.

Thus, all of the difference equations of Eq. (10), the boudary values of ¥,
(Eq. (9)), and {,; (Eq. (12)) are accurate to the second order with respect to AT
and A4d.

Distance r ., to the outer boundary must be extremely large to obtain an accurate
solution for the kind of outer boundary conditions given above as reported by
Fornberg [137]. However, as Fornberg [137 also showed, the error of the maxi-
mum vorticity on the surface of the body is less than 2% when r_, is about 100
times the size of the radius a in the range of the Reynolds numbers from 20 to 80.
As far as aerodynamic force is concerned, the error due to the size of r_, is reported
[1, 11] to be negligible if #_, is of the order of 100 times the size of a; r is therefore
taken to be so in the present computation, also.

The equations have been solved with the SOR method in which the initial value
was supplied by the inviscid solution { 14] for a circular cylinder in a uniform shear
flow.

To determine the condition for the discrimination of convergence by iteration,
the trial computations were executed with various values of 47, 4d and §,, 6.,
where 0, and J, are the residuals in iteration of ¥ and { at a time T, respectively.
Taking into account these results, those by others [1, 11, 13, 15, 16] and the
cost of computation, J, and J, were finally determined to be 10~* and 5x 1074
respectively.

3.2. Aerodynamic Force

The pressure coefficient C,(n) at the point 5 on the cylinder surface was obtained
from Egs. (10) and (11). The coefficient of frictional force C_(5) was obtained from
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the equation of the shearing stress. Both equations, non-dimensionalized with
respect to pU2/2. are reduced to

, 4 /@g\
C —C (0)=—
»(1)—C,(0) eJo '\é‘c/ wdn i
4 (e, {143
v, U,
C.(n)= Re \ﬁé—gﬁ_ .

The value of the pressure coefficient presented in this report is the arithmetic mean
of the values of the pressure integrated clockwise and counterclockwise starting
from 5 =2n and 0, respectively. The lift coefficient €, and the drag coefficient C,,
together with those pressure components (subscript p) and frictiocnal force com-
ponents (subscript s), acting on the body were obtained by the integration of the
pressure and friction forces on the surface of the cylinder. They are as follows:

Cl=C1p+Clsv Cdz Cdp+Cd5

C1p=—§§Cp(r1)sinl1d1], Cbzé?i’:,!;g)cosndn (15)

L4 Cn)cosndn,  Co=— 1 Cuinysiny di.

The Strouhal number here is defined as

2
S=Zaf 116}
where f is the frequency of C,.
4. RESULTS

In this section, the characteristics of the solutions by the SPB method at Xe's
equal to 20 and 80 will be described in the former part. and the acrodynamic force
at Re = 80 obtained by using this method will be presented in the latter part.

To determine the step sizes and the residuals at Re =20, both solutions by the
SPB method and the method of using the value of ¥, fixed to & certain value
(called the fixed-¥, method hereafter) were obtained at three spatial step sizes,
Ad = 2m/20, 21/30, 2140, and three residuals (5,,d:)=(107", 5x107°), (1077,
5% 1074, (1077, 5x107%) in the range of the values of 47/4d from about .1 to
0.7. Comparing these results with the results of computations [11, 13, 16] and
experiment [17] by others, and taking into account the cost of computation, the
step sizes, etc. were finally determined to be Ad=2r/40 (r =95.1a), 4T =10.06.
8, =107% 3. =5x107" a, = 1.84, where a, is a relaxation factor of ¥ in the SOR
method. The convergent solutions were obtained at T =60-100 when ‘hese
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parameters (the step sizes etc.) were used. Fluid particle moves approximately half
of the region of computation (about the distance, r_ ) during this time.

In the case of Re =80, the discriminative condition for convergence by iteration
was first determined by solving the equations with the fixed-¥, method at
’o=¢=0 in the range of about 0.2 to 1.0 of the values of AT/4d. Three spatial step
sizes and three residuals were Ad=2r/30, 2n/60, 27n/120 and (J,,0;)= (1073,
5x1073), (1074, 5x107%), (107>, 5x10~%), respectively. The maximum dis-
crepancy of the time mean aerodynamic-force coefficients due to the difference of
the residuals was less than 2% when 4d < 2n/60 and (d,,, 6.) < (1074, 5x 107 %), so
that (6, 6.)=(10"%, 5x 10™*) were chosen for both computations by the SPB and
the fixed-¥, methods. Since the discrepancy of the time mean aerodynamic-force
coefficients due to the difference of the spatial step sizes was large when V0, all
the aerodynamic-force coefficients and the Strouhal numbers in Section 4.2 below
were obtained as the limiting values as 4d>— 0 by the linear extrapolation from
convergent values by iteration at Ad=2n/60 (4T=0.05) and Ad=2n/120
(4T=0.0125) on the graphs for both the SPB and the fixed-¥, methods. The
extrapolated values in this way agreed very well with those by Richardson’s
extrapolation method [12]. In this case of Re =80, r,, = 111.34, and «, = 1.60. The
convergent and regular solutions were obtained at 7= 100-200 when those
parameters were used. Fluid particle moves approximately more than half of the
region of computation during this time. The word “regular” in this report is used
to mean that the time mean value, amplitude, frequency, etc. of the temporal
variation are constant.

The rotating speed ratios and the non-dimensional vorticities are, respectively,
Vo=0, —0.5 and £¢=0, 0.05 for Re =20, and V,=0-—2.0 and ¢ = —0.05-0.10 for
Re =80 (¢ = —0.03-0.10 only for ¥V,= —2.0). The initial values of ¥, on the surface
of the cylinder were given by ¥, =¢/4 + V, for both Reynolds numbers.

As described above, it was necessary to obtain the limiting values as 4d?—0
from the convergent values by iteration at two spatial step sizes 4d, =2n/60 and
Ad,=2n/120 for Re = 80. The discrepancy between the convergent values by itera-
tion were particularly large when V,#0. The reason for this is thought to be as
follows: Since the flow near the surface of the cylinder changes from the types of
flow with strong diffusion at Re =20 to the type of the boundary layer flow at
Re =80, the velocity gradient becomes strong near the surface of the cylinder. This
results in the great difference between the convergent solutions by iteration at Ad,
and 4d,. For instance, as the integrand 8(/é¢|._, in Eq. (14) to obtain the surface
pressure does not change its sign in the circumferential direction when ¥V, #0, the
error due to the finite 44 is monotonously accumulated by the integration. On the
contrary, the errors due to the finite 4d are canceled out by the integration when
V=0 because the integrand (/@& _, has different signs on the upper and lower
surfaces of the cylinder. This takes place regardless of using either the SPB or the
fixed-¥, method. Therefore, if the error becomes large as the value of Re becomes
large, it is not caused by the use of the SPB method but by the lack of pertinence
of the choice of the step size and the discriminative condition for convergence.
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4.1, Characteristics of Solutions by the SPB Method

4.1.1. Case of a Steady Flow

The reason for the choice of Re = 20 is because there are many exampies of solu-
tions for a circular cylinder set still in a uniform flow (V,=¢=0) and the flow is
steady. Three methods of determining ¥, on the cylinder surface were compared
here. The first method is the fixed-¥, method in which the value of ¥, is fixed to
zero. The second method corrects the value of ¥, by taking advantage of the
pressure difference AC,(=C,(2n) — C,(0)) (see the first eguation of Egs. (14})
which occurs as a result of numerical computation of the right-hand side of Eqg. (2}
In this method. ¥, at the next time step is corrected by the relation

Pl =9l 4C

T
po

where 4C, is obtained from one of Egs. (14) and 4 is a relaxation factor which
should be determined empirically for each solution. This method will be hereafter
called the A method. The third method is, of course, the SPB method.

TABLE I

Values of the Relative Error of AC,, ¥,, C,. and C,

AC
P ¥
v R T — X 100 (%, 0
0 h pmax pmin

‘{’0=0 X SPB ‘PO=G 2 5p3
0] 0 0.00 0.09 0.25 ¢] -0.000 -0.001
0 0.05 17.23 3.01 0.09 0 2.149 3.100
0.5 0 -2.60 0.47 -0.12 0] -0.826 -0.650
0.5 0.05 10.80 2.50 -0.04 o] 1.574 2.140

Cl
—\.’O € ‘{‘O=O X SPB
Present Ingham(1l) Present Nakabayashi(16)

cal. cal.
0 0 0.000 0.000 0.001 ¢.000 0.003
0 G.05 0.545 ~-0.056 ~0.143 -3.189
6.5 0 0.999 1.124 1.164 1.128
3.5 0.05 1.511 1.060 0.228

Cd
_VO € ¥.=0 S SPB
Present Ingham(11) Present Nakabayashi{16)

cal. cal.
0 G 1.995 1.998 1.985 1.975 1.993
0 0.05 1.990 1.952 1.974 1.916
0.5 ol 2.019 2.004 2,005 1.58%8
c.5 0.05 1.932 1.963 1.968

|
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Table I shows the proportions of the pressure difference 4C, to the difference
between the maximum and minimum pressures on the cylinder (4C,/
(Comax — Cpmin) X 100; called the relative pressure error AC,, hereafter), values of
¥,, and values of C, and C, at Re=20. C,,,, and C,;, are the maximum and
minimum pressures on the cylinder, respectively. The term “relative pressure error”
was used for the reason that the pressure difference AC, itself is an error of
computation. Since 4C, should be zero in physically allowable flow, the relative
pressure error of 4C,, is considered to be a kind of measure to represent the
adequacy of the value of ¥,. The symbols, ¥,=0, 4, and SPB in Table I mean that
the values given in the same columns as those symbols are the solutions by the
fixed-¥,, the 4, and the SPB methods, respectively. The relaxation factor was deter-
mined to be 1 =0.02 after trial computations. In Table I the solutions of C, and C,
by Ingham [11] and Nakabayashi [16] are also shown.

The flow obtained at this Reynolds number are all steady. From Table I, it can
be seen that the values of [4C,,| are smaller in the 4 and SPB methods than in the
fixed-¥, method and remain within +1% particularly in the case of the SPB
method for all conditions of computation. The values of ¥, are positive for the
still cylinder in the uniform shear flow (V,=0, ¢ =0.05), but are negative for the
rotating circular cylinder in the uniform flow (¥, = —0.5, ¢ =0) in both cases of the
SPB and the 4 methods. The positive effect by positive value of ¢ and the negative
effect by negative value of ¥V, on the value of ¥, result in smaller positive value of
¥, for Vo= —0.5 and ¢ =0.05 than for V; =0 and ¢ =0.05 in both cases of the SPB
and 1 methods. The values of C, for ¥,=0 and ¢=0.05 are positive in the fixed- ¥,
method, but are negative in the SPB and the 4 methods. The reason why the value
of C, for V=0 and ¢=0.05 by the A method is larger than that by the SPB
method is considered to be due to the fact that the value of 4C,, by the 4 method
is larger than that by the SPB method. The value of C, by Nakabayashi ez al. [16]
at similar conditions by the A method is negative as well (Table 1). The values of
C, show only a little difference among the methods of supplying the boundary
value of ¥, and agree fairly well with other solutions [11, 13, 16, 17].

Consequently, the values of |4C,, | by the SPB and the 4 methods are very small
compared with those by the fixed-¥, method, and, except for those at };=0,
£=0.05 and V,= —0.5, £¢=0.05 by the 4 method, well satisfy the condition of the
single-valuedness of the pressure term. ¥, and C,, including plus and minus signs
by the 1 method, indicate the same tendency as those by the SPB method for each
of the combinations of V', and ¢, but the values of 4C,, by the 4 method have larger
scatter among the combinations of V', and ¢ than those by the SPB method. This
implies that an optimum value of the relaxation factor A exists for each of the con-
ditions of computations, so the value of A should be determined for each of the
combinations of ¥V, and &. On the other hand, the SPB method requires no empiri-
cal factors such as A and always limits the range of scattering of the relative
pressure errors of AC,, to that narrower than +1%. All of these facts confirm that
the SPB method is a very efficient means of determining ¥, and is highly applicable
to steady flows such as Re = 20.
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Re=80, Vg=-0.5, €= 0

—— =0, —— SPB. seess SPRH
—e— A
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Y 20 40 60 86 . 100

FiG. 3. Temporal variations of 4C,.

4.1.2. Case of an Unsteady Flow

The case of the unsteady flow (Re=280) is described in this subsection. The -
method may be applicable to an unsteady flow, for instance, to a flow with wavy
¥,, by proceeding to the next time step, after 4C,=0 at a certain time 7 was
attained by iteration. This way of application of the A methed is extremely time-
consuming. Therefore, in the present computations, Eq. (17) was applied to the
unsteady flow in the same way as it was to the steady flow, in which the value of
4 was kept constant at 0.02. In this subsection, the spatial and the time step sizes
are Ad=2n/60 and AT =0.05, respectively.

Figures 3 and 4 indicate the variations of 4C, and ¥,. respectively with respect
to time, when ¥, = —0.5 and ¢ =0. The value of 4C, by the fixed-¥, method varies
periodically, and the time mean of 4C,, ie., A—Cp (the time mean value of any quan-
tity is distinguished by the symbol ~ over the quantity hereafter), is as large as
about 0.1 {which is equivalent to about 3% in terms of the time mean of AL, ;.
The value of AC, by the SPB method varies also periodically, but the relative error
of its amplitude remains within the range of about +1%. Its value of 4C,, s always
nearly zerc. The value of 4C, by the 4 method keeps reducing itself in a fluctuating
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Fig. 4. Temporal variations of ¥.
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manner, and its time mean appears to approach ZE’,, =0 in this case. The value of
4C, by the 1 method, however, kept decreasing from a positive value to a negative
one in another case. The value of ¥, (Fig.4) is, of course, always zero in the
fixed-¥, method. The value of ¥, by the SPB method approaches fluctuatingly a
certain time mean value which is approximately constant in the range of
100 < T'<< 200 as will be shown later in Fig. 8. The value of ¥, by the 4 method,
on the other hand, has a trait of approaching to a certain time mean value as in
the SPB method, but is always smaller than the value of ¥, by the SPB method.
The variations of C, and C, with respect to time in the case of V= —0.5 and
¢ =0 are shown in Figs. 5 and 6, respectively. The value of C, by the SPB method
is smaller than that by the fixed-¥, method while the value of C,, ie., the
amplitude of C,, by the SPB method is larger and more stable than that by the
fixed- ¥, method. The value of C, by the A method is larger than that by the SPB
method owing to positive AC,. C, by the 1 method is still getting larger and does
not seem to reach a regular state yet. In the case of C, (Fig. 6), both the value C,
and the amplitude C, by the SPB method are a little larger than those by the
fixed-¥, method. C, by the A method does not seem to reach a regular state yet.
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Comparison of these temporal variations of C, and C, with those of ¥, in Fig. 4
in the case of the SPB method shows that C, and C, attain a regular mode of
oscillation before the time mean value of ¥ stabilizes at a certain constant value.

The above results indicate that the value of 4C, has 2 stronger influence on C,
and {, than the value of ¥, itself. Since C, and C, by the SPB method do not con-
tain the contribution from 4C,, they must be values better reflecting the computed
flow around the body. However, 4C, even by the SPB method fluctuates
periodically about 4C, =0 (Fig. 3), wh1ch may haVc a certain influence on the com-
puted values of C, and C,. As stated in Section 2.2, Eq. (7} is the relation obtained
by applying Eq. (4) to the case of a rotating circular cylinder. Hence. the correction
term of ¥ of Eq. (7) (the terms except for the first term of the right-hand side) has
the same order of magnitude O(47') as that of Eq. (4). The SPB method (Eq. (%))
on the other hand, was the method of extrapolating ¥/ "7 ir Ec. (7) with the
accuracy of the second order of AT. Therefore, the accuracy of Eq. (9} is {477,
AT An, AT 4s*) as that of Eq. (4) is. Obtaining the terms of O{4T2 AT Any by the
Taylor expansion of Eq. (7) and adding these terms to the right-hand side of
Eq. (9) yield the following relations:

‘4‘7 T+4T __ q/é‘+(g_/z_2¢{~2_4T+ T]ITfSAT)_‘}_f‘(C—T)

— (=8N +

rAd?
|3

4T
A= (—3904-4&1 ) 118

The method of using Eq. (18) instead of Eq. (9) may be called the “method of self-
pursued boundary value with higher order” and will be abbreviated as the SPBH
method hereafter. The solutions by the SPBH method are also shown in Figs. 3 and
4 in which the SPBH method was applied for 7> 30 after the SPB method was
applied for 7<30. Applying the SPBH method reduces the amplitude of AL,
nearly zero and the value Fp is, of course, zero in this case as shown in Fic
Hence, it can be said that using the time and space differences with higher-crd
accuracy for the terms coming from the term v, ;é7T in Eq. (9) can always satisfy
the condition of AC,=0. However, the value of ¥, C,, and C, by the SPBH
method show almost no change compared with those by the SPB method as shown
in Figs. 4. 5, and 6, respectively.

As far as the initial value of ¥ is concerned, it has virtualiy no effect on the solu-
tions. Figure 4 shows both results obtained with the initial values of ¥, =2/4 + ¥/,
{symbol @ in the ordinate) and ¥,=1.0 (symbol C in the ordinate). bur noc
difference can be seen between the results printed out for T>30 in the figure
However, the convergent and regular solution for Vy= —10 and =0 was
obtained faster when the convergent and regular solution for ¥Vy= —0.5 and e=&
was applied to the initial values on the inner mesh points than when the aviscid
solution was applied. These facts imply that the value of ¥, by the SPB method is

P’ d

l‘b
¥
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FiG. 7. Temporal variations of 4C,.

dominated by the values of ¥ on the inner mesh points, which is a natural conclu-
sion from Eq. (9). The characteristics of the SPB and SPBH methods above remain
unchanged if 4d=2n/120 and 4T =0.0125.

Finally, the results which showed instability when the SPB method was applied
are shown compared with the results of the fixed-¥, method in Figs. 7 to 10. These
figures show the temporal variations of 4C, (Fig. 7), ¥, (Fig. 8), C, (Fig. 9), and
C, (Fig. 10) in the range of 100<T<200 for the case of V,=0 and &¢=0.05.
Figure 8 also shows ¥, with nearly regularly periodic fluctuation for the case of
Vo= —0.5 and ¢ =0 which is an example of stable solution. In the case of V;=0
and ¢=0.05, instability begins from 7= 130 as seen from the figures. When the
SPB method is applied, the instability visually appears not in 4C, but in ¥, for
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FiG. 8. Temporal variations of ¥,
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7> 130. On the contrary, however, it appears in AC, for 7> 130 when the fixed-¥,
method is applied. On the other hand, instability scarcely shows itself in C, in the
case of the SPB method, but is vividly seen in C, in the case of the fixed-¥, method
for T> 130. These examples show that the instability appears in the temporal varia-
tion of ¥, in the case of the SPB method, and in those of AC s Ci, and Cy in the
case of the fixed-¥, method. The same kind of characteristics as in the case of the
SPB method appears in the case of the SPBH method as well when the computa-
tion 1s semi-stable. Here, the semi-stability is defined, aithough the definition is a
little ambiguous, as the states that the computation is possible at ieast up tili 7= 100
and that the time mean values, amplitudes, and frequencies of the temporal varia-
tions of C, and C, show a tendency of approaching certain constant values, The
cases shown from Fig. 7 through 10 are examples of the most stable computations
among the semi-stable ones.

Although the characteristics when the solution by the SPB (SPBH) method is
semi-stable are as shown above, the stability analysis of the computation using this
method is very difficult.

When an extension of Neumann's method inveolving the boundary conditions
is applied to the present problems, the parameters invoived in the error amplifi-
cation matrix are found to be the Courant numbers C./A(=V_ AT/ Adk),
C,/h(=V, AT/4dh), the Reynolds number Re, AT/(Re 4dh*), 4T, and «,. The

Re=80, Vy=0, €=0.05
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Fic. 10. Temporal variatioas of C,,.
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parameters V, and ¢ do not appear explicitly. The «, among the parameters is
easily obtained, and the iteration method to solve the streamfunction equation (the
SOR method) is stable when 0 < «,, < 1.6. Inclusion of the scale factor 4(>1) in the
parameters can be avoided if the region of the computation is fixed to a certain
value of »_.( = 111.3a). Even if these factors are considered, the relation among the
parameters to limit the spectral radius of the error amplification matrix to the value
less than unity is extremely complex and has the general form,

. AT
f(Cé, C”, RC, W) =0,
where only independent parameters are included. Since the stable region which is
numerically obtained from the above relation does not necessarily agree with the
region of the resultant stability of the numerical solution of the present problems
(called the stable region hereafter), the stable region using the SPBH method at
Re =80 was numerically obtained by changing the values of the above parameters.
The way to obtain the stable region is to solve the present problem at various

Stable Unstable (-V,, €)
Case(a) O —---—- ° (0.0)
Case(b) A ———a& (2.0)
Case{c) O ———m {2,0.1)
Yo:0 1 v (Vg e)=(2,0)
0.25 F O (Vy.e)=(2,01)
AT o
ReAd? I
0.20 Re=80 , SPBH
0.15
o e
0.10 + - - A
R m\}-l_-—,i//b/
.. .///
0.05 N @(é};./affo
%Wi/’ A
[

0 02 04 06 08 10

Fic. 11. Extent of stable regions.
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values of AT by keeping the value of 44 constant in the range of
Ad =2r/20-21/120, where the initial values on the inner mesh points are the same
as described in Section 3.1. The stable computation is defined as the computation
in which the iteration procedure to obtain ¥ at a time T converges within the num-
ber of iterations assigned, and in which the temporal variations of C; and C, are
regular for a long enough time interval after the fluid particles have passed more
than half the region of computation. The boundary of the stable region is semi-
stable. Three kinds of combination of the values of (¥, ¢) are tested, that is, {3, 0}
{(Case (a)), {(—2.0,0) (Case (b)), and {—2.0, 0.1) (Case (c}}. The resuits are shown
in Fig. 11. The ordinate of the fioure AT/Re Ad> (={I] AT /ANUT] Azfvl) iz the

4S8 =2Wa/N (k. (D)), tne abscissa Al/Aa=U, 4! /AS 1S e Lourani numoer
based on U_. Since the definition of the semi-stability has a certain ambiguiry, the
boundary of the stable region has a certain width. Many computations and much
cost are required to determine this width and so the boundaries were not deier-
mined precisely. This is the reason why the boundaries are not drawn with solid
lines. Only the symbols near the boundaries, not those far from the boundaries, ars
shown in the figure. From the figure, it is scen that the upper limits of the values
of C, (the abscissa) and 4 (the ordinate) do not exist in Case (a) within the range
of the tested values of the parameters. The upper limits of the values of 4 in
Cases (b} and (¢}, however, are low at approximately 0.08, and the lower limits are
a little higher than that of Case (a). The upper limits of the values of C, become
fower in the order of Cases (a), (b), and (c). Thus, the stable region becomes
narrower in the order of Cases (a), (b), and {¢j. The extent of the stable region
depends also on the value of V,,. The results of the computation of Case (b} showed
that the stable region became narrower in the order of ;= —1.0, —2.0, and —2.0;
that 1s, the stable region in this case is wider when the value of |¥] is smaller. The
results by the fixed-¥, method with ¥, =0 for Cases (b) and (c) are also shown
in the figure by the symbols %V and <, respectively, where the coordinates of
respective points are A47/4d = 02387, AT/Re Ad* +=0.0285 and AT/Ad = 0.9545.
AT/Re 4d* = 0.1140. The computation by the fixed-¥, methed is semi-stable, but
that by the SPBH method is completely unstable at these points. But still the extent
of the stable region of the SPBH method is approximately equal to that of the
fixed-¥, method with ¥, =0. It should be noted here that the result of the com-
putation by the fixed-¥, method with ¥, =0 does not satisfy the physical condition
of 4C,=0.

So the stability of the fixed-¥, method with ¥;#0 was checked at the semi-
stable point of the SPBH method (47/4d=0.5730, AT/Re Ad* =0.0684). The
result by the SPBH method at this point shows that the solution reaches a regular
staie at 7= 150 and becomes unstable after 7= 180. At this regular state, ¥, = 8.7
The computation by the fixed-¥, method with ¥,=8.2 was very unstable and in
fact could not be continued long enough. These examples do not show that the
SPBH method is more stable than the fixed-¥, method or that the former iz less

581-92.1-17
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stable than the latter. The fact that the extents of the stable regions of the SPB and
the fixed-¥, (¥,=0) methods are nearly equal to each other and that the extent
of the stable region of Case (b) depends on the value of | V| rather suggest that the
difference of the extents of the stable regions of Cases (a), (b), and (c) is introduced
not by the use of the SPBH method but by the change of the local Courant and
cell-Reynolds numbers brought by the rotation of the cylinder (V) and the velocity
gradient of the flow field (¢). It should be mentioned finally that the solution of the
case of e#0 (V=0 or V,#0) is always less stable than that of the case of V0
(¢=0) in both the SPBH and the fixed- ¥, methods.

Thus far, the computed results, AC,, ¥,, C,, and C, by the SPB (SPBH)
method, the A method, and the fixed-¥, method have been compared with one
another, from which the following characteristics of the SPB method have been
revealed. First, use of the SPB method can always satisfy the condition of the physi-
cally allowable flow field (4C,=0), regardless of whether the flow is steady or
unsteady. Second, the periodic fluctuation of 4C, about 4C,=0 when the SPB
method is applied to an unsteady flow can be removed by approximating the time
derivative 0v,/0T by the higher-order time and space differences (the SPBH
method). Third, the solutions by the SPB method are not affected by the initial
value of ¥, at least for 7> 30. Fourth, the instability of the computation when it
is semi-stable appears in the temporal variation of ¥, in the case of the SPB
(SPBH) method and in the temporal variations of 4C,, C,, and C, in the case of
the fixed-¥, method with ¥,=0. Finally, from the resultant stability analysis, the
width of the semi-stable region of the SPBH method is seen to be narrower than
that of the fixed- ¥, method with ¥,=0.

4.2. Aerodynamic Force Computed by the SPBH Method

The results of computation for the range of V,=0-—2.0 and ¢= —0.05-0.10
(e= —0.030.10 only for V;= —2.0) at Re =80 by the SPBH method will be shown
here in comparison with those [18-20] by the fixed-¥, method with ¥;=0. The
aerodynamic forces in the case of the fixed-¥, method were determined in the range
of time in which the temporal variation of C, is regular. The aerodynamic forces in
the case of the SPBH method are easier to determine than those in the case of the
fixed-¥, method, since the aerodynamic forces are more stable and only a little
affected by the change of the value of ¥, as mentioned in the preceding subsection.
They were determined either in the range of time in which the time mean value of
¥, was constant or in the range of time in which the time mean value of ¥, was
constant when the computation was destabilized after the time mean value of ¥,
was constant for a long enough interval. Figure 12 shows the surfaces of the lift
coefficients C, as the functions of V', and &. Both surfaces by the SPBH (black sym-
bols) and the fixed-¥, (white symbols) methods have small double curvatures and
steep gradients in the direction of increasing value of [V,|. As the value of ¢
increases while the value of V, is kept constant, the value of C, by the SPBH
method decreases and the rate of decrease is larger when the value of | V| is larger
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while the value of C, by the fixed-¥, method increases almost linearly and the rate
of increase is smaller when the value of |V, is larger, and in fact the value of |
decreases a little when V= —2.0. It is interesting to see that the value of C, of the
still cylinder in a uniform shear flow (V,=0, ¢ #0) increases and becomes positive
with the increase of ¢ in the case of the fixed- ¥, method just as it does in the resulis
of the fixed-¥, method by Tamura et al. [15], while in contrast the value of T,
decreases and becomes negative with the increase of ¢ in the case of the SPBH
method (the value of C; by the SPBH method is also negative at positive values of
¢ when Re = 20 like that of Nakabayashi er al. [16]). When C, is divided intc com-
ponents, the components due to frictional force C,; by both methods are small and
almost equal to each other, and the pressure component C,, occupies more than
90% of C, in both cases by the two methods (this is not shown here). Figurs 13
{Vo=0, £¢=0.05) shows the pressure distributions on the surface of the circuiar
cylinder from which C,,’s were obtained. As seen from the figure, C,(§} by the
fixed- ¥, method is higher on the lower surface of the cylinder (8 = 180°-360"} and
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Fic. 13. Pressure distributions on the circular cylinder.

lower on its upper surface (6§ =0°-180°) than by the SPBH method. The dis-
crepancy between the results by both methods results in AC,=0311 in the case of
the fixed-¥, method and A4C, = 0 in the case of the SPBH method. That is, the fact
that C, by the fixed-¥, method is larger than that by the SPBH method is caused
by the error of pressure AC,. The same thing occurs at the larger values of |V,
also. Therefore, the decrease of C; with ¢ by the SPBH method is considered to. be
nearer to the truth as 4C, is always zero in this case. The surface of the drag coef-
ficients C, are shown against the parameters V' and ¢ in Fig. 14. The slope of the
surface of C, are far smaller than those of C,. The values (@ and O ) of C, in a
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FiG. 14. Dependency of C, on ¢ and V.
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uniform flow (V,=¢=0) by the two methods are almost equal to each other, but
are a littie larger than the values of computations [1, 15] and of experiment {17]
by others. The value () of C, in a uniform shear flow {¥V,=0) computed with
the fixed-¥, method by Tamura et al. [15] increases a littie with the value of ¢
while those {white symbols) with the present fixed- ¥, method decrease a little and
the rate of decrease is larger when the value of | V] is larger. On the other hand,
the values (black symbols) of C, by the SPBH method are almost equal to those
{white symbols) by the fixed-¥, method when V,=0. The discrepancy between the
values of C, by the two methods is very large when ¥,= —2.0. Figures 15a and b
show the component due to the pressure force C,, and that due to the frictional
force C,, of C,4, respectively. The discrepancy between the values of C,, by the two
methods is very little as seen in Fig. 15b, while that of C,, is large especially when
/o= —20. Therefore, it is obvious that the discrepancy between the values of T,
by the two methods comes from the difference between the values of the pressure
component of C,. In the case of the fixed-¥, method, the pressure error 4C, is as
large as +0.2 for 4d=2n/60 and —0.3 for 4d=2n/120 when ¥V y= —20 and ¢ =0.
Although this is an extreme case, the value of 4C, is never equal to zero for any
combination of the values of (¥, ¢) except for the case of ¥y =¢=0. This pressure
error produces the errors of the values of T, and C, by the fixed-¥, method and
is considered to be the main reason for these.

Figure 16 shows the surfaces of the amplitude of C,, ie, C. against the
parameters ¥, and &. The experimental result ( @ ) of the still cylinder in a uniform
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flow by Okajima et al. [21] and the values (® ) of the still cylinder in a uniform
shear flow computed with the fixed-¥, method by Tamura et al. [15] are also
shown in the figure. Okajima er al’s experimental value is smaller than the value
(@) of C, at Vy=¢=0 by the SPBH method. This is considered to be due to the
fact that the result of Okajima et al. is affected by the friction at the ends and the
inertia of the cylinder. The discrepancy between the values by the present fixed-¥,,
method (white symbols) and those by Tamura ez al. (™ )} when V,=0 and ¢#0 is
fairly large and is considered to be due to the fact that Tamura er al’s values were
obtained at 4d=2n/50 while our values by the fixed-¥, method were the limiting
values as Ad* — 0. The surface obtained by the SPBH method is always higher than
that by the fixed- ¥, method except for the point of (V,, )= (—2.0, 0) as shown in
Fig. 16. In the fixed-¥, method, the value of ¥, is fixed at zero, but the value of
¥, fluctuates in the real physical flow. That is, the fixed-¥, method puts a hoop
on the flow near the cylinder and reduces the fluctuation of the flow around the
cylinder. Therefore, the surface of C; by the SPBH method is considered to be
nearer to the real flow phenomenon than that computed by the fixed-¥, method.



SELF-PURSUED BOUNDARY-VALUE METHOD 247

¢ -0.05-0.03 0 0.05 0.10
Yo=0 o A O
SPBH ® v @& A 8
® Tamura et ol
Tritton 17!
Okajima et @
@ Roshko!22!

F==n (23}

273 Tamura et all®

3)

&

1(21)

©

0.2

S

0 .0 20

FiG. 17. Dependency of S, on ¢ and 1.

Figure 17 shows the Strouhal numbers S, of , computed with the two methods
together with the experimental results by others [17, 21-237 and the computed
results with the fixed-¥, method by Tamura er al [23]. The values by the two
methods agree well with each other and with the experimental values as shown in
Fig. 17 when V,=e=0. The values of S,, for the case of V=0 and ¢#£0 by the
two methods stay well inside the range of experimental scatter (Z°"22") by
Tamura et al In the case of §,,, the solutions by both methods do not differ so
much from each other. The flow is seen to be steady for Vy= —2.6 and £ <0 sven
at Re =80.

5. CONCLUDING REMARKS

A new method {called the SPB method) of determining the boundary value of ¥
on the surface of a body with an arbitrary profile was developed for cases when the
MNavier—Stokes equations formulated in terms of stream function ¥ and vorticity
are numerically solved. Sample computations were carried out for a rotating
circular cylinder in a uniform shear flow at relatively low Reynolds numbers
{20, 80). The results are summarized as follows:
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(1) Equation (4) was obtained which can supply the value of ¥ on the
surface of a body with an arbitrary profile without using any empirical factor,

(2) Equation (4) was applied to determine the flow around a rotating
circular cylinder in a uniform shear flow for Re=20 and 80. A comparison of
this SPB method with other methods shows the following results:

(2.1)

(2.2)

(2.3)
(2.4)

(2.5)

The SPB method always satisfies the condition of physically
allowable flow (4C,=0) regardless of steady and unsteady flows,

The periodical fluctuation of 4C, about R,,:o, which takes place
when the SPB method is applied to the unsteady flow, can be
removed by higher-order time and space differences (the SPBH
method),

The solutions for 7> 30 by the SPB method are scarcely affected by
the initial value of ¥,

The extent of the stable region by the SPBH method is narrower
when V,#0 and £#0 than when Vy=¢=0.

When the computation is semi-stable, the instability appears in the
temporal variation of ¥, in the case of the SPB (SPBH) method and
in the temporal variations of 4C,, C,, and C, in the case of the
fixed-¥, method with ¥;=0. The width of the semi-stable region of
the SPBH method is narrower than that of the fixed-¥, method with
¥,=0.

(3) The aerodynamic forces on the rotating circular cylinder in a uniform
shear flow were computed by using the SPBH method in the ranges of V,=0-—2.0
and ¢ = —0.05-0.10 (¢ = —0.03-0.10 only for V,= —2.0) at Re =80. The results are

as follows:

(3.1)

(3.2)

The value of C, increases very rapidly with the increase of the value
of |V, but decreases gradually with the increase of the value of e.

The value of C, decreases with the increase of the value of | V| at the
constant value of ¢. It decreases at the small constant value of | V],
but increases at the large constant value of |V, | when the value of ¢
increases. These changes of the value of C, are due to the changes of
the value of the pressure component C,,.

The value of C, by the SPBH method is larger than that by the
fixed- ¥, method with ¥, =0 except for the point of steady flow, and
increases with the increase of the value of e.

The value of S, by the SPBH method is not much different from that
by the fixed- ¥, method with ¥, =0 except for the point of V= —2.0
and ¢=0.05, and decreases gradually with the increase of the value of
¢ at larger values of &. There exists a steady flow even at Re = 80 when
the cylinder rotates in a uniform shear flow.
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